Part Number Hot Search : 
NTE6093 MP501 117G50 MC68HC7 AN1702 FM440 AD8652 MAX69
Product Description
Full Text Search
 

To Download HUF76013D3S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HUF76013P3, HUF76013D3S
TM
Data Sheet
April 2000
File Number
4849
20A, 20V, 0.022 Ohm, N-Channel, Logic Level Power MOSFETs
The HUF76013 is an application-specific MOSFET optimized for switching when used as the upper switch in synchronous buck applications. The low gate charge and low input capacitance results in lower driver and lower switching losses thereby increasing the overall system efficiency.
Features
* 20A, 20V - rDS(ON) = 0.022, VGS = 10V - rDS(ON) = 0.030, VGS = 5V * PWM Optimized for Synchronous Buck Applications * Fast Switching
Symbol
D
G
* Low Gate Charge - Qg Total 14nC (Typ)
S
Packaging
HUF76013D3S JEDEC TO-252AA
DRAIN (FLANGE)
HUF76013P3 JEDEC TO-220AB
SOURCE DRAIN GATE
* Low Capacitance - CISS 624pF (Typ) - CRSS 71pF (Typ)
Ordering Information
PART NUMBER HUF76013P3 PACKAGE TO-220AB TO-252AA BRAND 76013P 76013D
GATE SOURCE
HUF76013D3S
DRAIN (FLANGE)
NOTE: When ordering, use the entire part number. Add the suffix T to obtain the HUF76013D3S in tape and reel, e.g., HUF76013D3ST.
Absolute Maximum Ratings
SYMBOL VDSS VDGR VGS ID ID IDM PD TJ, TSTG TL Tpkg RJC RJA NOTE: 1. TJ = 25oC to 125oC.
TC = 25oC, Unless Otherwise Specified PARAMETER HUF76013P3, HUF76013D3S 20 20 16 20 20 Figure 4 50 0.4 -55 to 150 300 260 2.5 62 100 UNITS V V V A A A W W/oC
oC oC oC oC/W oC/W oC/W
Drain to Source Voltage (Note 1) Drain to Gate Voltage (RGS = 20k) (Note 1) Gate to Source Voltage Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2) Continuous (TC = 100oC, VGS = 5V) Pulsed Drain Current Power Dissipation Derate Above 25oC Operating and Storage Temperature Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s Package Body for 10s, See Techbrief TB334 Thermal Resistance Junction to Case, TO-220, TO-252 Thermal Resistance Junction to Ambient TO-220 Thermal Resistance Junction to Ambient TO-252
THERMAL SPECIFICATIONS
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright (c) Intersil Corporation 2000 UltraFET(R) is a registered trademark of Intersil Corporation.
HUF76013P3, HUF76013D3S
Electrical Specifications
PARAMETER OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS IGSS VGS(TH) rDS(ON) ID = 250A, VGS = 0V (Figure 11) VDS = 20V, VGS = 0V VDS = 20V, VGS = 0V, TC = 150oC Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source ON Resistance VGS = VDS, ID = 250A (Figure 10) ID = 20A, VGS = 10V (Figures 8, 9) ID = 20A, VGS = 5V (Figure 8) SWITCHING SPECIFICATIONS (VGS = 5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON td(ON) tr td(OFF) tf tOFF tON td(ON) tr td(OFF) tf tOFF Qg(TOT) Qg(TOT) Qg(TH) Qgs Qgd CISS COSS CRSS VDS = 20V, VGS = 0V, f = 1MHz (Figure 12) VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 10V, ID = 20A, Ig(REF) = 1.0mA (Figures 13, 16, 17) VDD = 10V, ID = 20A VGS = 10V, RGS = 19 (Figures 15, 18, 19) VDD = 10V, ID = 20A VGS = 5V, RGS = 19 (Figures 14, 18, 19) 11 120 19 30 197 72 ns ns ns ns ns ns 1 0.018 0.025 3 0.022 0.030 V W W VGS = 16V 20 1 250 100 V A A nA TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge at 10V Total Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance 624 444 71 pF pF pF 14.4 7.8 0.9 3.5 3.2 17 9 1 nC nC nC nC nC 7 93 37 29 151 100 ns ns ns ns ns ns
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage SYMBOL VSD trr QRR ISD = 20A ISD = 10A Reverse Recovery Time Reverse Recovered Charge ISD = 20A, dISD/dt = 100A/s ISD = 20A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 1.0 55 82 UNITS V V ns nC
2
HUF76013P3, HUF76013D3S Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) ID, DRAIN CURRENT (A) 25 VGS = 10V
20 VGS = 5.0V
15
10
5
25
50
75
100
125
150
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
2 1 THERMAL IMPEDANCE ZJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 100 101
SINGLE PULSE 0.01 10-5 10-4
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
1000
TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: VGS = 10V I = I25 150 - TC 125
IDM, PEAK CURRENT (A)
100
VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101
FIGURE 4. PEAK CURRENT CAPABILITY
3
HUF76013P3, HUF76013D3S Typical Performance Curves
300
(Continued)
40 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V 30
ID, DRAIN CURRENT (A)
100s
ID , DRAIN CURRENT (A)
100
20 TJ = 150oC 10 TJ = 25oC 0 TJ = -55oC 3 4 5
10
OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) SINGLE PULSE TJ = MAX RATED TC = 25oC
1ms
10ms
1
1
10 VDS , DRAIN TO SOURCE VOLTAGE (V)
50
2
VGS , GATE TO SOURCE VOLTAGE (V)
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
FIGURE 6. TRANSFER CHARACTERISTICS
40 VGS = 10V ID, DRAIN CURRENT (A) 30 VGS = 5V
rDS(ON) , DRAIN TO SOURCE ON RESISTANCE (m)
TC = 25oC PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VGS = 4V
50 ID = 20A 40 ID = 5A 30 ID = 10A PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC
20 VGS = 3.5V 10 VGS = 3V 0
20
10 0 1 2 3 4 VDS , DRAIN TO SOURCE VOLTAGE (V)
2
4
6
8
10
VGS , GATE TO SOURCE VOLTAGE (V)
FIGURE 7. SATURATION CHARACTERISTICS
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT
1.6 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 1.4 NORMALIZED GATE THRESHOLD VOLTAGE
1.2 VGS = VDS, ID = 250A
1.0
1.2
1.0
0.8
0.8 VGS = 10V, ID = 20A 0.6 -80 -40 0 40 80 120 160
0.6 -80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
4
HUF76013P3, HUF76013D3S Typical Performance Curves
1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250A 1.1
(Continued)
2500
COSS CDS + CGD
C, CAPACITANCE (pF)
1000 CISS = CGS + CGD
1.0
CRSS = CGD
0.9
100 0.8 -80 VGS = 0V, f = 1MHz -40 0 40 80 120 160 50 0.1 1 VDS , DRAIN TO SOURCE VOLTAGE (V) 10 20 TJ , JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 10V 8 SWITCHING TIME (ns) 180 VGS = 5V, VDD = 10V, ID = 20A 150 tr 120 90 60 30 td(ON) 0 3 6 9 12 15 0 0 10 20 30 40 50 RGS , GATE TO SOURCE RESISTANCE () Qg, GATE CHARGE (nC) tf td(OFF)
6
4 WAVEFORMS IN DESCENDING ORDER: ID = 20A ID = 10A ID = 5A
2
0
NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
FIGURE 14. SWITCHING TIME vs GATE RESISTANCE
120 VGS = 10V, VDD = 10V, ID = 20A 100 SWITCHING TIME (ns) 80 60 40 20 0 0 10 20 30 40 50 tr
td(OFF)
tf td(ON)
RGS, GATE TO SOURCE RESISTANCE ()
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
5
HUF76013P3, HUF76013D3S Test Circuits and Waveforms
VDS RL VDD VDS VGS = 10V VGS
+
Qg(TOT)
Qg(TOT) VDD VGS VGS = 1V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 5V
DUT Ig(REF)
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORMS
VDS
tON td(ON) RL VDS
+
tOFF td(OFF) tr tf 90%
90%
VGS
DUT RGS
VDD 0
10% 90%
10%
VGS VGS 0 10%
50% PULSE WIDTH
50%
FIGURE 18. SWITCHING TIME TEST CIRCUIT
FIGURE 19. SWITCHING TIME WAVEFORM
6
HUF76013P3, HUF76013D3S PSPICE Electrical Model
.SUBCKT HUF76013P3 2 1 3 ;
CA 12 8 6.5e-10 CB 15 14 7.0e-10 CIN 6 8 5.6e-10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
10
rev 23March 2000
LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 DRAIN 2 RSLC1 51 ESLC 50
RSLC2
5 51
ESG 6 8 + LGATE GATE 1 RLGATE CIN EVTEMP RGATE + 18 22 9 20 EVTHRES + 19 8 6
IT 8 17 1 LDRAIN 2 5 1.00e-9 LGATE 1 9 4.9e-9 LSOURCE 3 7 4.9e-9 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1e-3 RGATE 9 20 3.0 RLDRAIN 2 5 10 RLGATE 1 9 49 RLSOURCE 3 7 49 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 12.5e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
MSTRO LSOURCE 8 RSOURCE RLSOURCE 7 SOURCE 3
S1A 12 S1B CA 13 + EGS 6 8 13 8
S2A 14 13 S2B CB + EDS 5 8 14 IT 15 17
-
-
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*175),2.5))} .MODEL DBODYMOD D (IS = 5.4e-13 RS = 1.15e-2 TRS1 = 7.0e-5 TRS2 = -1.0e-6 CJO = 12.3e-10 TT = 2.93e-8 M = 0.40) .MODEL DBREAKMOD D (RS = 3.50e-1 TRS1 = 1e-3 TRS2 = -6.5e-6) .MODEL DPLCAPMOD D (CJO = 4.6e-10 IS = 1e-30 N = 10 M = 0.6) .MODEL MMEDMOD NMOS (VTO = 2.2 KP = 2.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.0) .MODEL MSTROMOD NMOS (VTO = 2.66 KP = 40 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u LAMBDA=.01) .MODEL MWEAKMOD NMOS (VTO = 1.90 KP = 0.03 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 30 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.0e-3 TC2 = -1.0e-6) .MODEL RDRAINMOD RES (TC1 = 2.1e-2 TC2 = 6.5e-5) .MODEL RSLCMOD RES (TC1 = 3.5e-3 TC2 = 2e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -1.9e-3 TC2 = -6.0e-6) .MODEL RVTEMPMOD RES (TC1 = -1.8e-3 TC2 = 0) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.5 VOFF= -1.5) VON = -1.5 VOFF= -4.5) VON = -0.5 VOFF= 0) VON = 0 VOFF= -0.5)
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
+
-
EBREAK 11 7 17 18 26 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
RDRAIN 21 16
DBODY
MWEAK MMED
RBREAK 18 RVTEMP 19
VBAT +
8 22 RVTHRES
HUF76013P3, HUF76013D3S SABER Electrical Model
REV 23March2000 template huf76013p3 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 5.4e-13, rs = 1.15e-2, trs1 = 7.0e-5, trs2 = -1e-6, cjo = 12.3e-10, tt = 2.93e-8, m = 0.40) dp..model dbreakmod = (rs = 3.50e-1, trs1 = 1e-3, trs2 = -6.5e-6) dp..model dplcapmod = (cjo = 4.60e-10, isl = 10e-30,nl=10, m = 0.6) m..model mmedmod = (type=_n, vto = 2.2, kp = 2.0, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.66, kp = 40, lamda=0.01, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.90, kp = 0.03, is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.5, voff = -1.5) DPLCAP 5 sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.5, voff = -4.5) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0) 10 sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0, voff = -0.5) c.ca n12 n8 = 6.50e-10 c.cb n15 n14 = 7.0e-10 c.cin n6 n8 = 5.60e-10 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 l.ldrain n2 n5 = 1.00e-9 l.lgate n1 n9 = 4.9e-9 l.lsource n3 n7 = 4.9e-9
GATE 1 RLGATE CIN LGATE RSLC1 51 RSLC2 ISCL
LDRAIN DRAIN 2 RLDRAIN
ESG + EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8
50 RDRAIN 21 16
DBREAK 11 DBODY MWEAK MMED EBREAK + 17 18
MSTRO 8
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 1.0e-3, tc2 = -1.00e-6 res.rdrain n50 n16 = 1e-3, tc1 = 2.1e-2, tc2 = 6.5e-5 res.rgate n9 n20 = 3.0 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 49 res.rlsource n3 n7 = 49 res.rslc1 n5 n51= 1e-6, tc1 = 3.5e-3, tc2 = 2.0e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 12.5e-3, tc1 = 1.0e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.8e-3, tc2 = 0 res.rvthres n22 n8 = 1, tc1 = -1.9e-3, tc2 = -6.00e-6 spe.ebreak n11 n7 n17 n18 = 26 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/175))** 2.5)) } }
S1A 12 13 8 S1B CA 13 + EGS 6 8 S2A 14 13 S2B
-
LSOURCE 7 RLSOURCE
SOURCE 3
RSOURCE RBREAK 17 18 RVTEMP CB + EDS 5 8 14 IT 19
15
VBAT +
-
-
8 RVTHRES
22
8
HUF76013P3, HUF76013D3S SPICE Thermal Model
REV 23March 2000 HUF76013T CTHERM1 th 6 1.0e-3 CTHERM2 6 5 2.80e-3 CTHERM3 5 4 3.00e-3 CTHERM4 4 3 3.40e-3 CTHERM5 3 2 6.40e-3 CTHERM6 2 tl 9.50e-2 RTHERM1 th 6 1.85e-2 RTHERM2 6 5 4.61e-2 RTHERM3 5 4 1.30e-1 RTHERM4 4 3 7.29e-1 RTHERM5 3 2 1.10 RTHERM6 2 tl 1.46e-1
th JUNCTION
RTHERM1
CTHERM1
6
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model HUF76013T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 1.0e-3 ctherm.ctherm2 6 5 = 2.80e-3 ctherm.ctherm3 5 4 = 3.00e-3 ctherm.ctherm4 4 3 = 3.40e-3 ctherm.ctherm5 3 2 = 6.40e-3 ctherm.ctherm6 2 tl = 9.50e-2 rtherm.rtherm1 th 6 =1.85e-2 rtherm.rtherm2 6 5 = 4.61e-2 rtherm.rtherm3 5 4 = 1.30e-1 rtherm.rtherm4 4 3 = 7.29e-1 rtherm.rtherm5 3 2 = 1.10 rtherm.rtherm6 2 tl = 1.46e-1 }
RTHERM3
CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
9
HUF76013P3, HUF76013D3S TO-252AA
SURFACE MOUNT JEDEC TO-252AA PLASTIC PACKAGE
E H1 A A1 SEATING PLANE D L2 1 3 L
b2
b e e1
TERM. 4
b1
L1
c
J1 0.265 (6.7)
SYMBOL A A1 b b1 b2 b3 c D E e e1 H1 J1 L L1 L2 L3
INCHES MIN MAX 0.086 0.094 0.018 0.022 0.028 0.032 0.033 0.045 0.205 0.215 0.190 0.018 0.022 0.270 0.295 0.250 0.265 0.090 TYP 0.180 BSC 0.035 0.045 0.040 0.045 0.100 0.115 0.020 0.025 0.170 0.040 -
MILLIMETERS MIN MAX 2.19 2.38 0.46 0.55 0.72 0.81 0.84 1.14 5.21 5.46 4.83 0.46 0.55 6.86 7.49 6.35 6.73 2.28 TYP 4.57 BSC 0.89 1.14 1.02 1.14 2.54 2.92 0.51 0.64 4.32 1.01 -
NOTES 4, 5 4, 5 4 4, 5 2 4, 5 7 7 4, 6 3 2
b3
L3
0.265 (6.7)
0.070 (1.8) 0.118 (3.0) BACK VIEW 0.063 (1.6) TYP 0.090 (2.3) TYP MINIMUM PAD SIZE RECOMMENDED FOR SURFACE-MOUNTED APPLICATIONS
NOTES: 1. These dimensions are within allowable dimensions of Rev. B of JEDEC TO-252AA outline dated 9-88. 2. L3 and b3 dimensions establish a minimum mounting surface for terminal 4. 3. Solder finish uncontrolled in this area. 4. Dimension (without solder). 5. Add typically 0.002 inches (0.05mm) for solder plating. 6. L1 is the terminal length for soldering. 7. Position of lead to be measured 0.090 inches (2.28mm) from bottom of dimension D. 8. Controlling dimension: Inch. 9. Revision 11 dated 1-00.
1.5mm DIA. HOLE
4.0mm USER DIRECTION OF FEED 2.0mm 1.75mm C L
TO-252AA
16mm TAPE AND REEL
16mm
8.0mm
COVER TAPE
22.4mm
13mm 330mm 50mm
GENERAL INFORMATION 1. 2500 PIECES PER REEL. 2. ORDER IN MULTIPLES OF FULL REELS ONLY. 3. MEETS EIA-481 REVISION "A" SPECIFICATIONS.
16.4mm
10
HUF76013P3, HUF76013D3S TO-220AB
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE
A OP Q H1 D E1 45o D1 TERM. 4 E A1
INCHES SYMBOL A A1 b b1 c D D1 E E1 e e1 MIN 0.170 0.048 0.030 0.045 0.014 0.590 0.395 MAX 0.180 0.052 0.034 0.055 0.019 0.610 0.160 0.410 0.030 0.100 TYP 0.200 BSC 0.235 0.100 0.530 0.130 0.149 0.102 0.255 0.110 0.550 0.150 0.153 0.112
MILLIMETERS MIN 4.32 1.22 0.77 1.15 0.36 14.99 10.04 MAX 4.57 1.32 0.86 1.39 0.48 15.49 4.06 10.41 0.76 2.54 TYP 5.08 BSC 5.97 2.54 13.47 3.31 3.79 2.60 6.47 2.79 13.97 3.81 3.88 2.84 NOTES 3, 4 2, 3 2, 3, 4 5 5 6 2 -
L1
b1 b c
L 60o 1 2 3
e e1
J1
H1 J1 L L1 OP Q
NOTES: 1. These dimensions are within allowable dimensions of Rev. J of JEDEC TO-220AB outline dated 3-24-87. 2. Lead dimension and finish uncontrolled in L1. 3. Lead dimension (without solder). 4. Add typically 0.002 inches (0.05mm) for solder coating. 5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D. 6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D. 7. Controlling dimension: Inch. 8. Revision 2 dated 7-97.
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
11


▲Up To Search▲   

 
Price & Availability of HUF76013D3S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X